Mathematik in (einfachen) Spielen

Prof. Dr. Jan Metzger Universität Potsdam

April 2019

Überblick

Einleitung

Endliche Spiele mit vollständiger Information

Invarianten

Beispiel: Nehmen

Nim-Spiel

Was ist ein mathematisches Spiel?

Gegeben

- Zwei oder mehr Spieler.
- ▶ Jeder Spieler hat zu einem gegebenen Zeitpunkt die Wahl zwischen verschiedenen Zugmöglichkeiten.
- ▶ Eine Auszahlungsfunktion, die am Ende den Gewinner bestimmt.
- Die Spieler spielen so, dass jeder versucht die maximale Auszahlung zu bekommen.

Gesucht

► Eine Strategie, die jedem Spieler zu jedem Zeitpunkt den höchstmöglichen Gewinn garantiert.

Endliche und unendliche Spiele

Endliche Spiele

Ein endliches Spiel ist eines in dem in jedem Zug nur endlich viele Strategien zur Verfügung stehen.

Beispiele für endliche Spiele

- ► Tic-Tac-Toe
- Schach
- ► Stein-Schere-Papier

Beispiele für unendliche Spiele

- ► Auktionen (Zugmöglichkeiten sind die gebotenen Preise)
- Verfolgungsfahrt (Zugmöglichkeiten sind Geschwindigkeit und Richtung)

Vollständige und unvollständige Information

Spiele mit vollständiger Information

Zu jedem Zeitpunkt liegt die vollständige Information über die gewählte Strategie des Gegners vor.

Beispiele für Spiele mit vollständiger Information

- Schach
- Tic-Tac-Toe
- Nim-artige Spiele

Beispiel für Spiele ohne vollständige Information

- ► Stein-Schere-Papier
- viele Kartenspiele

Überblick

Einleitung

Endliche Spiele mit vollständiger Information

Invarianten

Endliche Spiele mit vollständiger Information – Teil 1

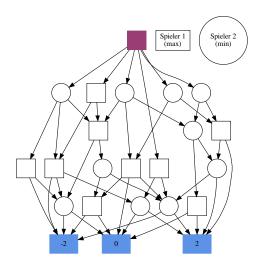
Lösungsstrategie (für zwei Spieler, Nullsummenspiel)

Erstelle einen Spielgraphen

Anleitung

- Der Spielgraph hat für jede mögliche Stellung in Spiel einen Knoten
- Es gibt zwei verschiedene Knotentypen, Typ 1 für den ersten Spieler und Typ 2 für den zweiten Spieler
- ► Ein Typ 1 Knoten ist mit einem anderen Knoten verbunden, wenn es eine Zugmöglichkeit von Spieler 1 ist, die Stellung entsprechend zu ändern.
- Genauso für Zugmöglichkeiten für Spieler 2.
- Ein Knoten ist der Startknoten
- ► Ein Knoten der zum Ende des Spiels führt wird mit dem erzielten Wert des Spiels beschriftet.

Spielbaum: Beispiel



Lösung von endlichen Spielen mit vollständiger Information – Teil 2

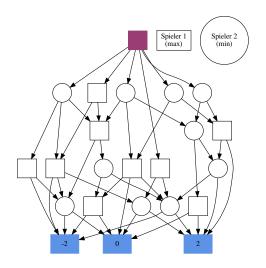
Lösungsstrategie (für zwei Spieler, Nullsummenspiel)

Erstelle einen Spielgraphen

Anleitung

- ► An allen Knoten, die direkt mit einem Endknoten verbunden sind, ist der Wert des Spiels direkt ablesbar.
- ► Alle anderen Knoten können nach und nach mit dem Wert des Spiels beschriftet werden.

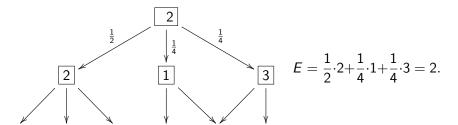
Spielbaum: Beispiel



Integration von Zufallselementen

- ▶ In einem Spiel können auch Zufallselemente integriert sein.
- ▶ Das Spiel besitzt dann keinen garantierten Ausgang mehr, sondern einen zufälligen.
- ▶ Der Wert des Spiels ist dann der Erwartungswert der Gewinnfunktion.
- Der Spielbaum wird dann angepasst.

Beispiel



Diskussion

Vorteile

▶ Im Prinzip ist jedes endliche Spiel damit lösbar.

Nachteile

- ► Spielbäume können schnell sehr groß werden.
- Beispiel: Schach, Go.

Hausaufgabe

► Tic-Tac-Toe

Überblick

Einleitung

Endliche Spiele mit vollständiger Information

Invarianten

Beispiel: Nehmen

Nim-Spiel

Auswege: Finde Struktur im Spiel

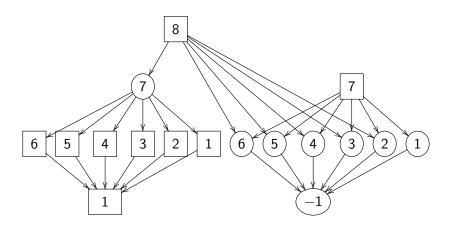
Beispiel: Nehmen

- ► Gegeben sind 100 Spielsteine.
- Zwei Spieler ziehen abwechselnd mindestens einen aber höchstens sechs Steine.
- Gewinner ist derjenige, der den letzten Stein bekommt.

Sprechweise

- Zug: Das was ein Spieler macht.
- Runde: Ein Zug von Spieler 1 und der darauf folgende Zug von Spieler 2.

Ende des Spielbaums



Auflösung

Idee

- ► Schafft es Spieler 1, seinem Gegner 7 Steine zu überlassen, gewinnt Spieler 1.
- ▶ Das gelingt sicher, wenn Spieler 1 seinem Gegner 14 Steine überlassen kann.

Allgemein

► Schafft es Spieler 1, dass sein Gegner eine durch 7 teilbare Anzahl von Spielsteinen vorfindet, gewinnt er.

Strategie

- ► Spieler 1 nimmt 2 Steine.
- ► In jedem Zug nimmt Spieler 1 sieben minus der Anzahl der von Spieler 2 im vorigen Zug genommenen Anzahl der Steine.
- Spieler 1 gewinnt.

Sprechweise

Definition

mod k = der Rest bei der Division von n durch k.

Beispiele

- $ightharpoonup 4 \mod 7 = 4$
- ▶ 11 $\mod 7 = 4$,
- ightharpoonup 21 mod 7 = 0,
- ▶ 100 mod 7 = 2.

Allgemeiner Satz

Allgemeines Nehmen

- ► Gegeben sind *n* Spielsteine.
- ightharpoonup Zwei Spieler ziehen abwechselnd mindestens einen aber höchstens k-1 Steine.
- Gewinner ist derjenige, der den letzten Stein bekommt.

Satz

Ist $n \mod k \neq 0$ so hat der Anfangsspieler eine Gewinnstrategie, ist $n \mod k = 0$, so hat der andere Spieler eine Gewinnstrategie.

Beweis - Teil 1

Fall 1: $n \mod k = 0$

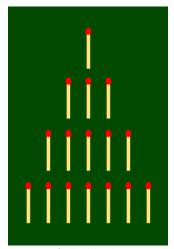
- ▶ Spieler 1 beginnt und nimmt s Steine. Spieler 2 nimmt k-s Steine.
- ▶ Es verbleiben n k Steine und es gilt $n k \mod k = 0$.
- ▶ In jeder Runde nimmt Spieler 2 soviele Steine, dass er zusammen mit Spieler 1 genau *k* Steine genommen hat. Die verbleibende Anzahl der Steine ist dann immer durch *k* teilbar.
- Außerdem nimmt Sie in jeder Runde um k ab.
- ▶ Nach *n/k* Zügen nimmt Spieler 2 also den letzten Stein.

Beweis - Teil 2

Fall 2: $n \mod k \neq 0$

- ► Spieler 1 beginnt und nimmt *n* mod *k* Steine.
- ▶ Ab diesem Zeitpunkt ist es ein Spiel mit *n* − (*n* mod *k*) Steinen, in dem Spieler 2 beginnt, d.h. die Rollen von Spieler 1 und 2 sind vertauscht.
- ▶ Es gilt $(n (n \mod k)) \mod k = 0$. Also kann Spieler 2 nicht gewinnen.

Nim-Spiel



Quelle: Wikipedia
https://de.wikipedia.org/wiki/Nim-Spiel.
Lizenz: CC BY-SA 3.0, https:
//creativecommons.org/licenses/by-sa/3.0/deed.de.
Lizeber: Lincopy, Quelle: Wikipedia (Nim-Spiel)

Klassisches Nim

- Gegeben die Spielaufstellung links.
- Zwei Spieler ziehen abwechselnd mindestens ein Hölzchen.
- Es dürfen beliebig viele Hölzer gezogen werden, aber nur aus einer Reihe.
- Gewinner ist, wer das letzte Hölzchen nehmen kann.

Quelle: Wikipedia https://de.wikipedia.org/wiki/Nim-Spiel. Lizenz: CC BY-SA 3.0, https://creativecommons.org/licenses/by-sa/3.0/deed.de. Urheber: Chuck SMITH.

Lösungsstrategie nach Bouton – Teil 1

Idee: Binärdarstellung

I 1 0 0 1
III 3 0 1 1
IIIII 5 1 0 1
IIIIIII 7 1 1 1

Betrachte die Spalten in der Binärdarstellung

Zähle in jeder Spalte die Anzahl der Einsen, das nennen wir die *Spaltenkonfiguration*. Hier: (2, 2, 4).

Lösungsstrategie nach Bouton – Teil 2

Beobachtungen

- ► Ein Spieler gewinnt, wenn am Ende in jeder Spalte Null Einsen stehen.
- ► Null ist gerade.

Definition

- ► Eine *Verluststellung* ist eine Stellung in der alle Zahlen in der Spaltenkonfiguration gerade sind.
- ► Eine *Gewinnstellung* ist eine Stellung, die keine Verluststellung ist.

Satz 1

Findet ein Spieler eine Verluststellung vor, so führt jeder Zug dazu, dass sein Gegner eine Gewinnstellung vorfindet.

Satz 2

Findet ein Spieler eine Gewinnstellung vor, so gibt es einen Zug, der seinen Gegner in Verluststellung bringt.

Klassisches Nim, Beispiel

Spie	ler 1 am
Zug	
1	0 0 1
3	0 1 1
5	101
7	1 1 1
	(2,2,4)

Keine Ve Verluststellung.

Verluststellung.

Keine

Verluststellung.

Verluststellung.

Folgerungen

Satz

Findet ein Spieler eine Gewinnstellung vor, so kann er sicher stellen, dass er in der nächsten Runde wieder eine Gewinnstellung vorfindet. Diese Stellung enthält weniger Hölzchen.

Satz

Ein Spieler der eine Gewinnstellung vorfindet, kann immer gewinnen.

Strategie

Wähle einen Zug, der den Gegner in Verluststellung bringt.

Zum Weiterlesen

- ► Wikipedia-Artikel: Nim-Spiel
- In den Wikipedia-Artikeln: Weiterführende Referenzen
- ► Google-Suche: "Spielbaum Tic-Tac-Toe"
 - ► Auch die Bildersuche bemühen
 - ► Schöne Programmbeispiele
- ...

Danke für die Aufmerksamkeit

Beweise, Teil 1

Satz 1

Findet ein Spieler eine Verluststellung vor, so führt jeder Zug dazu, dass sein Gegner keine Verluststellung vorfindet.

Beweis

- ▶ Die Spaltenkonfiguration seien (s_3, s_2, s_1) und alle seien gerade.
- ▶ In jedem Zug ändert sich genau eine Zeile, etwa die *n*-te.
- Durch Nehmen ändert sich die Binärdarstellung.
- ▶ Die neue Spaltenkonfiguration sei (s'_3, s'_2, s'_1) .
- ▶ Betrachte die n-te Zeile: Ist die Ziffer in der i-ten Spalte eine 1 und wird zur 0, so ist $s'_i = s_i 1$. Ist die Ziffer eine 0 und wird zur 1, so ist $s'_i = s_i + 1$.
- \triangleright Ändert sich also die Ziffer an der *i*-ten Stelle, so ist s'_i jetzt ungerade.
- Es muss sich mindestens eine Stelle ändern.
- Also ist in (s'_3, s'_2, s'_1) mindestens eine ungerade Zahl und damit ist dies keine Verluststellung.

Beweise, Teil 2

Satz 2

Findet ein Spieler eine Gewinnstellung vor, so gibt es einen Zug, der seinen Gegner in Verluststellung bringt.

Beweis

- ▶ Sei $(s_N, ..., s_3, s_2, s_1)$ die vorgefundene Gewinnstellung.
- ▶ Eine der Zahlen $(s_N, ..., s_1)$ ist ungerade. Wähle die am weitesten links stehende Spalte i so dass s_i ungerade ist.
- ▶ links von der *i*-ten Spalte stehen nur gerade Spaltensummen.
- rechts davon könnten noch weiter ungerade Spaltensummen vorkommen, etwa in den Spalten i_1, \ldots, i_l .
- Es gibt eine Zeile in der in der *i*-ten Spalte eine 1 steht. Das sei in der *n*-te Zeile der Fall. Angenommen, dort liegen M Hölzchen, dann ist $M \geq 2^{i-1}$.

Beweise, Teil 2

▶ Die Binärdarstellung von *M* ist also

$$M = z_N 2^{N-1} + \dots + z_{i+1} 2^i + \frac{1}{1} \cdot 2^{i-1} + x$$

wobei $x < 2^{i-1}$. Sei x' diejenige Zahl, die aus x entsteht, wenn die Ziffern in den Spalten i_1, \ldots, i_l so geändert werden, dass (nur) dort jede 0 durch eine 1 und jede 1 durch eine 0 ersetzt wird. Setze

$$M' = z_N 2^{N-1} + \cdots + z_{i+1} 2^i + 0 \cdot 2^{i-1} + x'.$$

Dann ist M' < M und wir können M - M' Hölzchen nehmen, so dass jetzt in der n-ten Zeile M' Hölzchen liegen.

Nun entsteht eine Verlustposition, denn die Spaltensummen wurden in genau den Spalten geändert, in denen vorhin eine ungerade Summe stand.